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1 The Poincaré Lemma for de Rham Cohomology

We only consider de Rham cohomology in this section. Our goal is to prove the following statement:

Proposition 1.1
H∗(M × R) ' H∗(M). To find the isomorphism, let π : M × R → M the projection on the first

factor, and s : Rn →M × R be a section, namely :

π(x, t) = x

s(x) = (x, r), r ∈ R

These two maps induce inverse isomorphisms on de Rham cohomology.

It is safe to assume s to be the zero section, which means s(x) = s(x, 0). We denote the induced
maps on chain level by π∗, s∗. It is trivial that s∗ ◦ π∗ = 1, so it remains to show that π∗ ◦ s∗ induces
identity map on cohomology. Now we need a tool from algebraic topology.

Definition 1.2 (Chain Homotopy)
Let A∗ and B∗ be chain complexes, f, g be chain maps. A chain homotopy from f to g is a collection

of maps hn : An → Bn−1, such that f − g = dh+ hd (indexes omitted).

If the chain homotopy exist, we say that f and g are chain homotopic.

If f and g are chain homotopic, then they induce the same map on cohomology, since dh − hd
induces zero map. So to prove π∗ ◦ s∗ induces identity map on cohomology, we need to find the chain
homotopy from 1 to π∗ ◦ s∗.

To construct the chain homotopy, we claim that every form on M × R is uniquely a linear com-
bination of the following two types of forms:

(I) (π∗φ)f(x, t)

(II) (π∗φ)f(x, t) dt,

where φ is a form on M . These are the part without dt and the part with dt. To prove the claim,
first notice this is true when M = Rn, then in general case, use the fact that M × R is locally Rn.
Now define Kq : Ωq(M × R)→ Ωq−1(M × R) by

(I) (π∗φ)f(x, t) 7→ 0

(II) (π∗φ)f(x, t) dt 7→ (π∗φ)

∫ t

0

f.

Direct computation shows that 1 − π∗ ◦ s∗ = (−1)q−1(dK − Kd). Assign appropriate sign to each
Kq, we obtain chain homotopy from 1 to π∗ ◦ s∗. Thus proposition 1.1 is proved.
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Corollary 1.3 (Poincaré Lemma)

H∗(Rn) ' H∗(Rn−1) ' · · · ' H∗(point)

Corollary 1.4 (Homotopy Axiom for de Rham Cohomology)
Homotopic maps induce the same map in de Rham cohomology.

Proof: Recall that a homotopy between two maps f and g from M to N is a map F : M×R→ N
such that

F (x, t) =

{
f(x) for t > 1

g(x) for t 6 0.

Let s0 and s1 : M →M × R be the 0-section and 1-section, then

f = F ◦ s1
g = F ◦ s0.

Thus
f∗ = s∗1 ◦ F ∗ = (π∗)−1 ◦ F ∗ = s∗0 ◦ F ∗ = g∗

�
This means de Rham cohomology is a homotopy invariant.
We can compute H∗dR(Sn) with the help of Poincaré lemma. The process is basically the same as

calculating singular homology of Sn.

Corollary 1.5

H∗(Sn) =

{
R for ∗ = 0, n

0 otherwise.

Proof: We do it by induction and assume that it is true for Sn−1. Cover Sn by two open sets U and
V where U is slightly larger than the northern hemisphere and V slightly larger than the southern
hemisphere. Since U ∩ V can deform into Sn−1, we have Mayer-Vietoris sequence:

It is then obvious that Hk(Sn) = 0 for k = 2, · · · , n − 1, and Hn(Sn) = R. Sn is connected, so
H0(Sn) = R. Now to calculate H1(Sn), notice δ : (ω, τ) → τ − ω is surjective, so d∗ : R → H1(Sn)
is zero map, which leads to H1(Sn) = 0. �
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From the Mayer-Vietoris sequence, we also know that d∗ send the generator of Hn−1(Sn−1) to the
generator of Hn(Sn). Example 2.6 in GTA82 shows that the generator of H1S1 is a bump 1-form,
sending this through repeatedly d∗, we get a bump n-form on Sn that generates Hn(Sn).

2 The Poincaré Lemma for Compactly Supported Cohomol-
ogy

In this section, we adapt proposition 1.1 to compactly supported cohomology.

Proposition 2.1

H∗+1
c (M × R) ' H∗c (M).

The shift in dimension makes compactly supported cohomology not a homotopy invariant.
Consider projection π : M × R → M . The pullback is not well defined for compactly supported

cohomology, so we define the push-forward map π∗ : Ω∗c(M × R) → Ω∗−1c (M) called integration
along the fiber, defined as follows. First note that a compactly supported form on M ×R is again
a linear combination of these two type of forms:

(I) (π∗φ)f(x, t)

(II) (π∗φ)f(x, t) dt,

where φ is a (not necessarily with compact support) form on the base M , and f(x, t) is a function
with compact support. We define π∗ by

(I) (π∗φ)f(x, t) 7→ 0

(II) (π∗φ)f(x, t) dt 7→ φ

∫ ∞
−∞

f(x, t)dt.

Direct calculation shows that π∗ : Ω∗c(M × R) → Ω∗−1c (M) is a chain map, so it induce map in
cohomology π∗ : H∗c (M × R) → H∗−1c (M) (still denoted by π∗). To find an inverse for π∗, let
e = e(t) dt be a compactly supported 1-form on R with total integral 1 and define

e∗ : Ω∗c(M)→ Ω∗+1
c (M × R)

φ 7→ (π∗φ) ∧ e.

e is also a chain map, so it induces a map in cohomology, which we still denote by e∗. Obviously
π∗ ◦ e∗ = 1 on Ω∗c(M). To prove e∗ ◦ π∗ = 1, we again construct a chain homotopy. Define K :
Ω∗c(M × R)→ Ω∗c(M × R) by

(I) (π∗φ)f(x, t) 7→ 0

(II) (π∗φ)f(x, t) dt 7→ (π∗φ)

{∫ t

−∞
f −

(∫ t

−∞
e

)(∫ ∞
−∞

f

)}
,

where all integrals are integrations along the fiber R. It can be shown that

1− e∗ ◦ π∗ = (−1)q−l(dK −Kd),

thus proposition 2.1 is proved.

Corollary 2.2 (Poincaré Lemma for Compact Supports)

H∗c (Rn) =

{
R for ∗ = n

0 otherwise.

Here the isomorphism Hn
c (Rn) ' R is given by iterated π∗, i.e., by integration over Rn. To find

a generator for Hn
c (Rn), send constant function 1 on one-point set by e∗ for n times, which gives

e1(x1) dx1 ∧ · · · ∧ en(xn) dxn = α(x) dx1 · · · dxn
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with
∫
Rn α(x) dx1 · · · dxn = 1. So the generator is a bump form.

Exercise: Compute the cohomology groups H∗(M) and H∗c (M) of the open Möbius strip M .

Solution: H∗(M) = H∗(S1) since there exists a deformation retraction. Now we compute the
compactly supported cohomology. Let U, V ⊆ M be two rectangular strips that intersect at both
ends, which are the coordinate charts of M . We have U ∩ V = A1 t A2 and we can safely assume
A1 is the only place where the transition function is orientation reversing. Apply the Mayer-Vietoris
sequences, we get

We claim that δ is an isomorphism, which implies H∗(M) = 0 for all dimensions.
Recall that

δ : (ω1, ω2) 7→ (−jU,∗(ω1, ω2), jV,∗(ω1, ω2))

where ωi ∈ Ω2
c(Ai) and jU , jV are inclusion maps. Endow A1 t A2 with the orientation of U , then

A1 has different orientation with V , and A2 has the same orientation with V . As a result, we have
δ(ω1, ω2) = (−ω1−ω2,−ω1 +ω2) (isomorphism Hn

c (Rn) ' R is needed if we want a strict argument).
Thus δ is an isomorphism.

4


